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Abstract. The differential cross-sections for processes of the type e+e− → (W+W −) → lνqq̄ are deter-
mined with account of background contributions and of anomalous triple gauge boson couplings. Analytic
expressions for dσ/ds1ds2d cos θ, where θ is the production angle of the W boson, are numerically integrated
with the Fortran package GENTLE. QED corrections are taken into account in the leading logarithmic ap-
proximation. The importance of the various contributions is studied for center-of-mass energies of 190 GeV,
500 GeV, and 1 TeV.

1 Introduction

Since the establishment of the electroweak standard model
[1]-[3] many precision tests confirmed its validity in var-
ious respects. One of the poorly investigated features is
the non-Abelian nature of gauge couplings. W pair pro-
duction,

e+e− → W+W−, (1.1)

provides an excellent way to investigate the triple gauge
boson self couplings.

First calculations of the cross-section for on-shell W
pair production in a renormalizable theory, the standard
model, were done in the seventies [4,5]. Already before
the formulation of the standard model the W width was
estimated to yield sizeable effects if the W boson is much
heavier than the proton [6]. Due to the finite width, W
bosons decay immediately and the production of four
fermions is observed. Production of off-shell W pairs,

e+e− −→ W+W− −→ f̄2f
′
2f1f̄

′
1, (1.2)

through the three diagrams of Fig. 1 was calculated first
in [7]. Feynman diagrams without an intermediate W pair
will also contribute to the four fermion final states in (1.2):

e+e− −→ f1f̄
′
1f̄2f

′
2. (1.3)

They constitute the so-called irreducible background and
are experimentally not distinguishable from the signal dia-
grams. Classifications and first studies may be found in [8,
9], and an overview in [10]. Further, photonic, electroweak,
and QCD radiative corrections must be regarded in order
to achieve sufficient accuracy of numerical predictions. A
huge literature exists on this subject. See e.g. [11]-[21],
and references therein.

The properties of triple boson vertices are investigated
with different approaches. Polarization amplitudes for the

most general form of the γW+W− and ZW+W− ver-
tices compatible with Lorentz invariance were determined
in [22,23]. Since then, many studies appeared on W pair
production with anomalous couplings, see e.g. [24]-[27].
For a recent overview, see e.g. [28].

The study of the physics of W bosons is one of the main
goals of LEP 2 and a future high-energy linear collider.
LEP 2 operates above the W pair production threshold
at about 161 GeV. Several thousands of W pairs will be
produced and precise measurements of mass, width, and
couplings of the W boson will become possible. Later, at
a future linear collider with an energy of 500 GeV or more
at high luminosity the number of produced W pairs will
be even larger than at LEP 2. For a review see [29].

As mentioned, the process (1.3) may be classified by
the final state fermions. In this article, we will treat the
CC11 class, defined by two requirements on the final state
fermions: (i) they have to belong to two different weak
isospin doublets and (ii) no electrons nor electron neutri-
nos are produced. Besides the doubly resonating diagrams
of Fig. 1 there are up to eight background diagrams of
the types shown in Fig. 2. This depends on the number
of neutrinos in the final state: l1ν̄1 l̄2ν2, l1ν̄1q̄q

′, q1q̄
′
1q̄2q

′
2,

(li 6= e). The semi-leptonic CC10 process is of special in-
terest for the study of anomalous couplings since its final
states offer the most complete kinematical information for
an experimental analysis of W pair production.

Present experimental limits on anomalous couplings
are not too stringent. In the parameter space of αWφ, αW ,
and αBφ the combined limits of LEP and D0 are [30] (see
also [31,32]) :

αWφ = −0.03+0.06
−0.06,

αW = −0.03+0.08
−0.08, (1.4)
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Fig. 1. The doubly resonating CC03 contributions to off-shell W pair production

αBφ = −0.05+0.22
−0.20.

Here, the identities

αWφ = cW sW δZ , (1.5)

αW = yγ =
sW

cW
yZ , (1.6)

αBφ = xγ − cW sW δZ = − cW

sW

(
xZ + s2

W δZ

)
(1.7)

are implied, and the anomalous couplings x, y, δZ are de-
fined in Sect. 3. These conventions are in accordance with
[28,33].

First signals of anomalous triple gauge boson couplings
will be small if any. Since the total cross-section is not
very sensitive to anomalous couplings, it is advantageous
to study distributions.

The semi-analytical expressions of GENTLE for total
cross-sections with QED corrections in the standard model
were derived for the signal diagrams in [34,35] and for the
background contributions in [36,37]. With the results pre-
sented in this article, GENTLE may be used also for pre-
dictions of dσ/d cos θ, where θ is the production angle of
one of the W bosons. We present analytical expressions
for the differential cross-section for processes of the CC11
class in the standard model in Sect. ?? and the effects
of anomalous couplings in Sect. 3. In appendices we give
some technical details of notations and the treatment of
QED corrections. Numerical results are discussed in the
corresponding sections.

The formulae of this article have been implemented in
GENTLE version 2 [38] which is currently used for experi-
mental studies at LEP 2.

2 The angular distribution
in the standard model

2.1 The CC03 process

The CC03 process is defined through reaction (1.2). The
fermion pairs f1f̄

′
1 and f̄2f

′
2 are the decay products of W−

and W+:

W− → d1ū′
1, W+ → d̄2u

′
2, (2.1)

and have the invariant masses s1 and s2. The scattering
angle θ is defined as the angle between the electron and
the W− boson.

The differential cross-section may be written as a sum
of s and t-channel contributions and of their interference
[7]:

dσCC03

d cos θ
=

√
λ

2πs2

∫
ds1ds2

[CtGt(s; s1, s2, cos θ)

+CsGs(s; s1, s2, cos θ)
+CstGst(s; s1, s2, cos θ)

]
. (2.2)

We give some notations, including the explicit expressions
for the C and G functions in appendix A.

2.2 Contributions from background diagrams

We subdivide the background contributions into three
parts:

dσb

d cos θ
=

dσsb

d cos θ
+

dσtb

d cos θ
+

dσbb

d cos θ
. (2.3)

The first term contains the interferences between the two
s-channel resonant diagrams and the eight background di-
agrams. The second one describes the interferences be-
tween the t-channel exchange diagram and background,
and the third one the pure background contributions.

We denote the various background diagrams by the
type of final state fermion coupling to the neutral gauge
boson. If e.g. an up-type anti-fermion couples to the pho-
ton or the Z boson, we will call this a u1-diagram. In
accordance with (2.1), the subindex 1 (2) indicates by con-
vention that a fermion of the weak doublet with negative
(positive) net charge is coupling to the neutral boson. We
use the calculational method described in [36] and FORM
[39].

2.2.1 Background–s-channel interference

There are 16 interferences between the two s-channel sig-
nal diagrams and the eight background diagrams. Each of
these interferences is split up into two products Csai

+ Gsai
+

and Csai− Gsai− :

dσsb

d cos θ
=

√
λ

2πs2

∫
ds1ds2

×
∑

i=1,2

∑
a=u,d

[Csai
+ Gsai

+ + Csai− Gsai−
]
. (2.4)
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Fig. 2. Four of the eight singly resonant contributions to off-shell W pair production: the d2-diagrams and the u2-diagrams

Summation index a stands for up-type or down-type
fermions of doublet i. The coefficient functions are:

Csai± =
∑

k,l=γ,Z

2
(6π2)2

×Re
1

Dk(s)D∗
l (s)DW (s1)DW (s2)D∗

W (s3−i)
× gk [L(e, k)L(e, l) ± R(e, k)R(e, l)]

× L2(F1, W )L2(F2, W )L(f i
a, l)

×Nc(F1)Nc(F2). (2.5)

The propagators are defined in (A.4) and the coupling
constants in (A.5). The two independent kinematical func-
tions for the su1-interference are:

Gsu1− (s, s1, s2) =
3
16

cos θ√
λ

ss2
{
2s
[
s(s1 + s2) − s2

1 − s2
2
]

× L(s1; s2, s) + (s + s1)2 − s2
2
}

,

(2.6)

Gsu1
+ (s, s1, s2) =

3
16

1 − 3 cos2 θ

λ
s2s1s2 [2ss2L(s1; s2, s)

+s − s1 + s2]

− 3ss2

16
[
s(s1 + s2)(1 + cos2 θ)

+2s1s2 sin2 θ
]L(s1; s2, s)

+
ss1

8
(s1 − s − 4s2)

+
3s2

32
[
s(3s1 − s2 − s)(1 + cos2 θ)

+ 2s1(s1 − s2) sin2 θ
]

+
λ sin2 θ

64
(s1 − s − s2). (2.7)

The logarithm

L(s; s1, s2) =
1√
λ

ln
s − s1 − s2 +

√
λ

s − s1 − s2 − √
λ

(2.8)

arises from integrating the fermion propagators in the
background diagrams.

The Gsai− -functions are proportional to cos θ and, thus,
they contribute only to the differential cross-section but do
not contribute to the total cross-section. After integration
over cos θ, (2.7) yields (3.1) of [36].

One may obtain the su2-interference by exchanging s1
and s2 in the su1-interference:

Gsu2± (s, s1, s2) = Gsu1± (s, s2, s1). (2.9)

To construct the kinematical functions with the down-
type fermion coupling to the neutral vector boson, one
may use the symmetry:

Gsd1± (s, s1, s2) = Gsd2± (s, s2, s1) = ∓Gsu1± (s, s1, s2). (2.10)

The coefficients of the P violating contributions in
(2.4), Csai− , vanish for pure photon exchange.

2.2.2 Background–t-channel interference

The t-channel background interference is:

dσtb

d cos θ
=

√
λ

2πs2

∫
ds1ds2

∑
i=1,2

∑
a=u,d

CtaiGtai . (2.11)

Due to the neutrino exchange in the t-channel, only left-
handed particles contribute and, therefore, only one com-
bination of couplings appears:

Ctai =
∑

k=γ,Z

2
(6π2)2

Re
1

DW (s1)DW (s2)D∗
k(s)D∗

W (s3−i)

× L2(E, W )L(e, k)L(fa
i , k)L2(F1, W )L2(F2, W )

×Nc(F1)Nc(F2). (2.12)

The kinematical functions are exceptionally asymmet-
ric since the integration over the fermion propagator in
the background diagrams is performed, while the neutrino
propagator (A.10) in the t-channel diagram is still present.
The kinematical function for the tu1-interference is:

Gtu1(s, s1, s2) =
−1
λ

{
3
4

cos θ√
λ

s2s1s
2
2(5 sin2 θ − 2)

×
[

1
tν

(s + s1 − s2) + 2sL(s1; s2, s)
]

+ λ

[
sin2 θ

8tν
[2s1s2(s2 − s1)

−6s2s2(s1 + s2)L(s1; s2, s) − 3ss2(s + s2)]



658 J. Biebel, T. Riemann: Off-shell W pair production with anomalous couplings: The CC11 process

+
sin2 θ

16
[(s − s1)2 − s2

2] +
ss1

2

]

+
ss1s2

tν

[
−3

4
ss2L(s1; s2, s)(5s sin4 θ + 4s1 + 4s2)

− 1
8
(3s2

2 − 2ss1 + 4s1s2 − 7s2
1 + 30ss2 + 9s2) sin2 θ

−1
2
(3s2

2 − 2s2
1 − s1s2 + 2ss1)

]
+

3s2s2

4
L(s1; s2, s)

×([4s1s2 + s2
1 + s2

2 − s(s1 + s2)] sin2 θ

− 4[s1s2 + s2
1 + s2

2 − s(s1 + s2)])

+
ss2 sin2 θ

8
(2s1s2 − 5s2

1 + 3s2
2 − 14ss1 − 3s2)

+
s

2
(5s2

1s2 − 2s1s
2
2 − 3s3

2 + 5ss1s2 + 3s2s2)
}

. (2.13)

The expression for the td1-interference becomes quite
compact using (2.13):

Gtd1(s, s1, s2) = −Gtu1(s, s1, s2)

− 3ss2

λ

[
sin2 θ

4tν
{(s + s1 + s2)[s1(2s1 − s − s2)

−(s − s2)2] − 2
[
ss1(s − s1)2 + ss2(s − s2)2

+s1s2(s1 − s2)2
]L(s1; s2, s)

}
+s
[
s(s1 + s2) − s2

1 − s2
2
]L(s1; s2, s)

+
1
2
[
(s + s1)2 − s2

2
]]

. (2.14)

The integral over cos θ of (2.13) yields Gu,d
CC11 and of

(2.14) yields Guu,dd
CC11 ((3.12) in [36]).

The remaining two G functions are easily constructed:

Gtu2(s, s1, s2) = Gtu1(s, s2, s1) (2.15)

and
Gtd2(s, s1, s2) = Gtd1(s, s2, s1). (2.16)

2.2.3 Pure background

The pure background contribution is:

dσbb

d cos θ
=

√
λ

2πs2

∫
ds1ds2

×
∑

a,b=u,d

∑
i,j=1,2

[
Caibj

+ Gaibj

+ + Caibj

− Gaibj

−
]
. (2.17)

Again, we have to introduce additional coefficient func-
tions C− compared to the total cross-section, where only
C+ functions appear:

Caibj

± =
∑

k,l=γ,Z

2
(6π2)2

Re
1

Dk(s)D∗
l (s)DW (s3−i)D∗

W (s3−j)

× [L(e, k)L(e, l) ± R(e, k)R(e, l)]
× L2(F1, W )L2(F2, W )Nc(F1)Nc(F2)

× L(fa
i , k)L(f b

j , l). (2.18)

The potentially 2 × 64 kinematical functions in (2.17)
can be reduced to 2 × 16 functions in a first step since
the γ and Z exchange differ only in the coefficient func-
tions (2.18). With

Gaibj

± = Gbjai

± (2.19)

the number of independent G-functions is further reduced
to 2 × 10.

Finally, we will need only five kinematical functions to
express them all.

The simplest cases are the squares of the various back-
ground diagrams (a = b and i = j in (2.17)); they are
given by:

Gu1u1− (s, s1, s2) =
3
4

cos θ√
λ

ss2

{
1
2
L(s1; s2, s) (2.20)

×
[
(s − s1)

2 − s2
2

]
+ s − s1 − s2

}

and

Gu1u1
+ (s, s1, s2) =

3
8

1 − 3 cos2 θ

λ
ss1s

2
2 [L(s1; s2, s)

×(s2 − s1 + s) + 2] +
1
64

λ(1 − cos2 θ)

+
3
16

s2(1 + cos2 θ) [sL(s1; s2, s)(s1 − s2 − s)

−2s − s1] +
1
8
s1(s + 3s2). (2.21)

By integrating (2.21) over cos θ one gets Gff
CC11 in (3.3) of

[36] while (2.20) vanishes.
The other interferences between background diagrams

of the same doublet are:

Gu2u2± (s, s1, s2) = Gu1u1± (s, s2, s1), (2.22)

Gd1d1± (s, s1, s2) = ±Gu1u1± (s, s1, s2), (2.23)

Gd2d2± (s, s1, s2) = ±Gu1u1± (s, s2, s1). (2.24)

With the aid of a neutral current function, one may prove
the relation:

Gu1d1
+ (s, s1, s2) = Gd1d1

+ (s, s1, s2) + Gu1u1
+ (s, s1, s2)

−ss2GDD
422 (s, s1, s2). (2.25)

The function GDD
422 (s, s1, s2) may be found in appendix C.

The functions Gaibj

− vanish in the neutral current case
and the analogue of (2.25) is:

Gu1d1− (s, s1, s2) = −
[
Gd1d1− (s, s1, s2) + Gu1u1− (s, s1, s2)

]
= 0. (2.26)

The expressions for the other doublet are:

Gu2d2± (s, s1, s2) = Gu1d1± (s, s2, s1). (2.27)
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The interferences between diagrams from different
doublets are more complicated. Here, we have

Gu1d2− (s, s1, s2) =
3
8

cos θ√
λ

s

{
2s

[
s2
2L(s1; s2, s)

−s2
1L(s2; s, s1) +

s2 − s1

2

]
− s2

1 + s2
2

}
(2.28)

and the lengthy expressions

Gu1d2
+ (s, s1, s2) = −18

s2s2
1s

2
2

λ3 (1 + sin2 θ)s2s1s2L(s1; s2, s)

×L(s2; s, s1) − 3s
[
s2
1L(s2; s, s1) + s2

2L(s1; s2, s)
]

×
[
sin2 θ

8
+

s cos2 θ

4λ
(s − σ) +

s2s1s2(1 + sin2 θ)
2λ2

×
(

2 − 3s
s − 3σ

λ

)]
− s(s1 − s2)

× [s2
1L(s2; s, s1) − s2

2L(s1; s2, s)
]

×
[
3 sin2 θ

8λ
(s − σ) +

3ss1s2(1 + sin2 θ)
2λ2

×
(

1 − 3s
s + σ

λ

)]
+

3s2s1s2(1 + sin2 θ)
4λ2

×
[
s2 − s2

1 − s2
2 − 12ss1s2(s − σ)

λ

]

+
s(1 + cos2 θ)

16λ

[
4ss1s2 + 3(s3

1 + s3
2)

−(3s2 + 7s1s2)σ
]− sin2 θ

32

[
24ss1s2(2s − σ)

λ

+ s2 − s2
1 − s2

2 − 10s1s2

]
(2.29)

and

Gu1u2− (s, s1, s2) = −Gu1d2− (s, s1, s2) +
s cos θ√

λ

{
27s2s2

1s
2
2

2λ2

×
[
s(σ − s)L(s1; s2, s)L(s2; s, s1) + (s1 − s − s2)

× L(s1; s2, s) + (s2 − s − s1)L(s2; s, s1) − 2
]

+
9ss1s2

2λ

[
s[3s1s2 + s(σ − s)]L(s1; s2, s)L(s2; s, s1)

+
[
s(s1 − s) + s2

(
s1 − s2 − s

2

)]
L(s1; s2, s)

+
[
s2(s2 − s − s1) − 5

2
ss1

]
L(s2; s, s1) − 5

4
(s + σ)

]

+
3s1

4

[
6s2s2L(s1; s2, s)L(s2; s, s1) + 3ss2L(s1; s2, s)

−s(3s2 + 2s1)L(s2; s, s1) −
(

s + s1 +
3
2
s2

)]}
.

(2.30)

In (2.29) and (2.30) we use the abbreviation

σ = s1 + s2. (2.31)

Further,

Gu1u2
+ (s, s1, s2) =

1
2
ss1s2GDD

233 (cos θ, s, s1, s2)

−Gu1d2
+ (s, s1, s2). (2.32)

The neutral current function GDD
233 (cos θ, s, s1, s2) can be

found in appendix C. The integral of (2.29) is Gu,d
CC11 defined

in (3.10) of [36] and that of (2.28) and (2.30) vanish.
The remaining kinematical functions are

Gd1u2± (s, s1, s2) = Gu1d2± (s, s2, s1) (2.33)

and
Gd1d2± (s, s1, s2) = ±Gu1u2± (s, s1, s2). (2.34)

2.3 Numerical results

Numerical results are obtained with the Fortran program
GENTLE [38], version 2.02.
QED initial state radiation (ISR) is treated as described
in appendix B and in [38].

We use the numerical default input values, e.g. MW =
80.230 GeV, ΓW = 2.0855 GeV, MZ = 91.1888 GeV,
ΓZ = 2.4974 GeV, sin2 θW = 0.22591, αem =
1/137.0359895, αs = 0.12, no Cabibbo mixing, and the
GENTLE flag settings

IPROC = IINPT = IONSHL = IZETTA = 1
ICONVL = IIQCD = IDCS = IMAP = IRSTP =
IMMIN = IMMAX = 1
IGAMWS = IGAMZS = 1
IGAMW = ITNONU = IQEDHS = ICOLMB = IZERO =
IBIN = IRMAX = 0.

The flags IBORNF, IBCKGR, ICHNNL are varied in an obvious
way. For calculations within the standard model IANO is
set equal to 0. The flags IGAMWS and IGAMZS are chosen
such that the boson widths are taken to be constant. For
the related problems with gauge invariance see [40,41,10].

In Fig. 3 the net size of the background effects at a
center-of-mass energy of 500 GeV is shown as the ratio
of the signal plus background cross-section to the signal
cross-section

R =
dσCC11/d cos θ

dσCC03/d cos θ
. (2.35)

The background contributions may become sizeable for
large scattering angles. For extreme backward production,
cos θ = −1, the effect is larger than 30%. At

√
s = 190

GeV, dσb/d cos θ (see (2.3) is less than 0.3% of σCC03 in
the whole range of the scattering angle; for more details
see [42].

In Tables 1 and 2 we present numerical data which may
be of some use for precision comparisons of different nu-
merical programs. For this purpose, we ran GENTLE at high
numerical precision but still a reasonable computing time
at a PC with a Pentium 133 MHz processor. The numer-
ical reliability was controlled by varying the parameters
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Fig. 3. The ratios CC09/CC03, CC10/CC03, and CC11/CC03
without QED corrections

Fig. 4. Differential cross-section for e+e− → µ−ν̄µud̄ with
various corrections

ε (for the relative error of Simpson integration) and δ (a
technical cut parameter improving numerical stability in
some edges of the phase space) in GENTLE. The technical
uncertainties in the last digits shown in the tables are of
the order one or smaller. Without ISR the cross-sections
are obtained with ε = 10−8 and δ = 10−5. With ISR, the
corresponding values are ε = 3 × 10−5 and δ = 10−4 (if
IBCKGR=1 and IBORNF=1, then δ = 10−3).

Although there are different coupling constants and
even a different number of contributing diagrams for the
various CC09, CC10, CC11 processes, one observes only
small differences between the various cross-sections, es-
pecially at LEP 2 energies. One may suspect that this is
due to certain relations between the relevant coupling con-
stant combinations in the cross-sections which make the
latter being dependent on only weak iso-spins. For exam-
ple, the s-channel background interference contributions
Csui
+ Gsui

+ + Csdi
+ Gsdi

+ are identical for all processes of the
CC11 class. Here, only the parity violating terms lead to
different background effects in this interference. Similarly,
for the t-channel background interference the flavour de-
pending combination Gtui + Gtdi is suppressed by cancel-
lations as it can be seen in (2.14). Obviously, the effects
which are similar for all final states of the CC11 class are
the numerically dominating background corrections.

QED corrections are shown in Fig. 4 at
√

s = 500
GeV. There is a considerable cross-section enhancement
for cos θ < −0.5. The background effect in this region of
cos θ is reduced, but still sizeable.

3 Anomalous couplings

We now extend the Lagrangian of the standard model by
anomalous triple gauge boson couplings. We allow terms
that obey Lorentz invariance and CP invariance. In addi-
tion, for the electromagnetic interaction we forbid C or P
violation and will not modify its strength.

These conditions are fulfilled by the Lagrangian pro-
posed in [43]:

L = −ie
[
Aµ

(
W−µνW+

ν − W+µνW−
ν

)
+ FµνW+µW−ν

]
− iexγFµνW+µW−ν

−ie cot Θw

[
Zµ

(
W−µνW+

ν − W+µνW−
ν

)
+ZµνW+µW−ν

]− iexZZµνW+µW−ν

− ieδZ

[
Zµ

(
W−µνW+

ν − W+µνW−
ν

)
+ZµνW+µW−ν

]
− ie

yγ

M2
W

F νλW−
λµW+µ

ν − ie
yZ

M2
W

ZνλW−
λµW+µ

ν

+
ezZ

M2
W

∂αZ̃ρσ

(
∂ρW−σW+α (3.1)

−∂ρW−αW+σ + ∂ρW+σW−α − ∂ρW+αW−σ
)
.

The term with the dual field tensor Z̃ violates both C
and P. With a multipole expansion, one gets the electro-
magnetic charge QW , the magnetic dipole moment µW ,
and the electric quadrupole moment qW [44,28]:

QW = e, (3.2)

µW =
e

2MW
(2 + xγ + yγ), (3.3)

qW = − e

M2
W

(1 + xγ − yγ). (3.4)

The anomalous couplings xγ , xZ , yγ , yZ , zZ , and δZ

produce additional contributions to the cross-section of W
pair production. The largest contributions will come from
resonant diagrams (Sect. 3.1), but others are also coming
from the interference between anomalous s-channel signal
diagrams and background (Sect. 3.2).

3.1 Anomalous contributions to the CC03 process

We write the cross-section for doubly resonant scattering
with anomalous couplings in the following form:

dσano
CC03

d cos θ
=

√
λ

2πs2

∫
ds1ds2

[∑
nm

Cs
nmGs

nm(s; s1, s2, cos θ)

+
∑

n

Cst
n Gst

n (s; s1, s2, cos θ)

]
. (3.5)

The sums over n,m run over x, y, δ, and z and the stan-
dard model couplings. The first sum in (3.5) describes the
s-channel interferences and the second sum the anomalous
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Table 1. Differential cross-sections without ISR. The CC03 cross-section is
calculated with the branching ratios for the CC10 process

√
s (GeV) cos θ σCC03 (pb) σCC09 (pb) σCC10 (pb) σCC11 (pb)

–0.8 0.0943803 0.0303466 0.0945159 0.294360
190 0.0 0.216791 0.0697497 0.217241 0.676600

0.8 0.790432 0.253951 0.791012 2.46385
–0.8 0.00646155 0.00172150 0.00539258 0.0168880

500 0.0 0.0215908 0.00654501 0.0204228 0.0637232
0.8 0.212368 0.0682179 0.212503 0.661957

–0.8 0.00244188 0.000403725 0.00128268 0.00407275
1000 0.0 0.00614750 0.00155423 0.00484706 0.0151154

0.8 0.0535172 0.0170530 0.0530947 0.165310

Table 2. Differential cross-sections with ISR. The CC03 cross-section is
calculated with the branching ratios for the CC10 process

√
s (GeV) cos θ σCC03 (pb) σCC09 (pb) σCC10 (pb) σCC11 (pb)

–0.8 0.09064 0.02915 0.09077 0.2827
190 0.0 0.1971 0.06340 0.1975 0.6150

0.8 0.6868 0.2206 0.6871 2.140
–0.8 0.01248 0.003749 0.01170 0.0365

500 0.0 0.02590 0.008036 0.02506 0.0782
0.8 0.2308 0.07418 0.2311 0.7198

–0.8 0.005282 0.001441 0.004510 0.01412
1000 0.0 0.007757 0.00223 0.006939 0.02163

0.8 0.0613 0.01963 0.06114 0.1904

st-interferences. The coefficient functions are:

Cs
nm =

∑
k,l=γ,Z

2
(6π2)2

Re
1

|DW (s1)|2|DW (s2)|2Dk(s)D∗
l (s)

× gn
k gm

l [1 + (1 − δn
m)δk

l ]Anm
kl

× L2(F1, W )L2(F2, W )Nc(F1)Nc(F2), (3.6)

Cst
n =

∑
k=γ,Z

2
(6π2)2

Re
1

|DW (s1)|2|DW (s2)|2Dk(s)

× gn
k L(e, l)L2(F1, W )L2(F2, W )L2(e, W )

×Nc(F1)Nc(F2), (3.7)

with
gx

γ = gsW xγ , gx
Z = gsW xZ ,

gy
γ = gsW yγ

M2
W

, gy
Z = gsW yZ

M2
W

,

gδ
Z = gsW δZ , gz

Z = gsW zZ

M2
W

.

(3.8)

and the standard model couplings

gSM
γ = gsW , gSM

Z = gcW . (3.9)

The constant Anm
kl is defined as follows:

Azm
kl = Amz

kl = L(e, k)L(e, l)

−R(e, k)R(e, l) for m 6= z (3.10)
Anm

kl = L(e, k)L(e, l)
+R(e, k)R(e, l) otherwise (3.11)

The δl
k in (3.6) is the Kronecker symbol. Note that the

pure standard model contributions are already treated in
Sect. 2.1 and should not be counted twice.

The anomalous kinematic functions in (3.5) are for the
st-interference:

Gst
x =

1
8
s

[
(s1 + s2)

(
s − s1 − s2 − 2s1s2

tν

)

+
λ

4
sin2 θ

]
, (3.12)

Gst
y =

1
4
ss1s2

[
s − s1 − s2 − 2s1s2

tν

]
, (3.13)

Gst
z =

1
16

λs

[
2(s1 + s2) − sin2 θ

tν
(s1(s − s1)

+ s2(s − s2))
]

, (3.14)

while for the s-channel contributions:

Gs
xx =

1
128

λs
[
(s1 + s2)(1 + cos2 θ)
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+s sin2 θ
]
, (3.15)

Gs
xy =

1
64

λss1s2(1 + cos2 θ), (3.16)

Gs
sx = Gs

xδ =
1

128
λs [4(s1 + s2)

+(s − s1 − s2) sin2 θ
]
, (3.17)

Gs
yy =

1
128

λss1s2
[
2s sin2 θ

+(s1 + s2)(1 + cos2 θ)
]
, (3.18)

Gs
sy = Gs

yδ =
1
16

λss1s2, (3.19)

Gs
zz =

1
128

λ2s(s1 + s2)(1 + cos2 θ), (3.20)

Gs
sδ = Gs

δδ =
1
32

λ

[
2s(s1 + s2)

+
(

3s1s2 +
λ

4

)
sin2 θ

]
, (3.21)

Gs
xz =

1
64

λ
3
2 s(s1 + s2) cos θ, (3.22)

Gs
yz =

1
32

λ
3
2 ss1s2 cos θ, (3.23)

Gs
sz = Gs

zδ = − 1
32

λ
3
2 s(s1 + s2) cos θ. (3.24)

3.2 Interferences of anomalous contributions
with background

Finally, we treat interferences of the anomalous s-channel
diagrams with background:

dσano
sb

d cos θ
=

√
λ

2πs2

∫
ds1ds2 (3.25)

×
∑

a=u,d

∑
i=1,2

∑
n

[Csai
+,nGsai

+,n + Csai−,nGsai−,n

]
.

The coefficient functions are

Csai±,n =
∑

k,l=γ,Z

2
(6π2)2

×Re
1

Dk(s)D∗
l (s)DW (s1)DW (s2)D∗

W (s3−i)
× gn

k [L(e, k)L(e, l) ± R(e, k)R(e, l)]

× L2(F1, W )L2(F2, W )L(f i
a, l)

×Nc(F1)Nc(F2), (3.26)

where gn
k stands for all couplings given in (3.8).

The anomalous kinematical functions are:

Gsu1−,x(s, s1, s2) =
3
32

cos θ√
λ

ss2
{
2s[s(s1 + s2) − s2

1 − s2
2]

× L(s1; s2, s) + (s + s1)2 − s2
2
}

,

(3.27)

Gsu1
+,x(s, s1, s2) =

3
32

1 − 3 cos2 θ

λ
s2s1s2 [2ss2L(s1; s2, s)

+s − s1 + s2]

− 3s

32
(1 + cos2 θ)ss2(s1 + s2)L(s1; s2, s)

+
ss2

64
(1 − 3 cos2 θ)(s + s2 − s1)

+
s

16

[
s2
1 − s2

2 − s(s1 + s2)

−λ sin2 θ

4

]
, (3.28)

Gsu1−,y(s, s1, s2) =
3
32

cos θ√
λ

ss1s2 {2ss2[2s − (s1 + s2)]

× L(s1; s2, s) − 2s2
2 + 2s1s2

+ 3ss2 − ss1 + s2} , (3.29)

Gsu1
+,y(s, s1, s2) =

ss1s2

64

{
6
1 − 3 cos2 θ

λ
ss2 {s[s − (s1 + s2)]

× L(s1; s2, s) + s + s1 − s2}
+ (1 − 3 cos2 θ)[s − 2ss2L(s1; s2, s)]
−16ss2L(s1; s2, s)

− 8(s − s1 + s2)
}

, (3.30)

Gsu1−,z(s, s1, s2) =
1
32

cos θ√
λ

s {6ss1s2[2ss2L(s1; s2, s)

+s − s1 + s2]
+λ [6ss2(s1 + s2)L(s1; s2, s)
+s(2s1 + 3s2) − s1s2 − 2s2

1 + 3s2
2
]}

,

(3.31)

Gsu1
+,z(s, s1, s2) =

3
64

(1 + cos2 θ)ss2
{
2s[s2

1

+s2
2 − s(s1 + s2)]L(s1; s2, s)

+s2
2 − (s + s1)2

}
, (3.32)

Gsu1
−,δ (s, s1, s2) = Gsu1− (s, s1, s2), (3.33)

Gsu1
+,δ (s, s1, s2) = Gsu1

+ (s, s1, s2). (3.34)

The remaining kinematical functions can be calculated
with the equations

Gsd1±,a(s, s1, s2) = Gsd2±,a(s, s2, s1) = ±Gsu2±,a(s, s2, s1)

= ±Gsu1±,a(s, s1, s2), (3.35)

Gsd1±,z(s, s1, s2) = Gsd2±,z(s, s2, s1) = ∓Gsu2±,z(s, s2, s1)

= ∓Gsu1±,z(s, s1, s2), (3.36)

where a stands for xγ , xZ , yγ , yZ , and δZ .
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Fig. 5. The ratio of cross-sections with anomalous cou-
plings to standard model cross-sections without background
and without ISR corrections at

√
s = 190 GeV. In each figure

only one anomalous coupling differs from zero

3.3 Numerical results

In Fig. 5 we show the bin-integrated differential cross-
section for all the six anomalous couplings at 190 GeV.
In each case only one anomalous coupling is allowed to
differ from zero. The figure is in excellent agreement with
an analogous figure in [43]. Comparisons with the Monte
Carlo event generator WOPPER [45,46] show also agreement
within the statistical accuracy of the MC program.

As an application, we shortly describe a study on the
discriminative power of W pair production with respect
to parity conserving and violating anomalous triple boson
couplings. At

√
s = 500 GeV with an integrated lumi-

nosity L = 50 fb−1, about 80 000 semi-leptonic W pair
decays are produced. The anomalous couplings appear in
the cross-section at most bilinearly. Allowing e.g. for two
anomalous couplings A and B simultaneously, one may
use the ansatz:

σtheor = σSM + Aσ1 + A2σ11 + Bσ2

+B2σ22 + ABσ12. (3.37)

After having calculated σSM, σ1, σ11, . . . with GENTLE (or
another program) within a given model and for definite
experimental conditions, one may confront experimental
data with the predictions. For a study of sensitivities, we
use σtheor for the simulation of σmeas ± √

σmeas/(6L),
the assumed measured cross-section with 1σ deviations
of the counting rates for the sum of all six semi-leptonic
production channels. For definiteness we use for σmeas

the standard model prediction σSM and apply no experi-
mental cuts. The solutions of (3.37) for A and B are el-

Fig. 6. 1σ-bounds at 500 GeV for L = 50 fb−1

lipses in the plane. Allowed pairs of coupling values are lo-
cated in the area between the two limiting ellipses. For the
sample analysis, we use two observables: σF and σB , the
forward and backward cross-sections. The forward (back-
ward) cross-section is defined by the requirement that the
angle between the momenta of the e− and the W− is less
(more) than 90◦. We choose these observables since they
may be used to form the total cross-section σtot = σF +
σB (arising from cross-section parts even in the produc-
tion angle) and the forward backward asymmetry AFB =
(σF −σB)/σtot (arising from odd cross-section parts). For
two different sets of anomalous couplings, the two rings
with allowed values derived from σF and σB overlap al-
most totally in the case of P conserving couplings xγ ,
δZ . When replacing δZ by the P violating coupling zZ ,
the allowed ranges overlap much less since the forward-
backward asymmetry is more sensitive to this coupling.
All this is nicely seen in Fig. 6 (where we also took ISR
into account). There, one further may notice that σB is
more sensitive to anomalous couplings than σF although
the relative statistical error of the latter is much smaller.
This is in accordance with the properties of the angular
distributions in Fig. 5 (see also Fig. 2 in [42] for a center-
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of-mass energy of 500 GeV). A similar discussion has been
performed for other pairs of anomalous couplings in [47].

4 Summary

We determined semi-analytical background and anoma-
lous contributions to the differential cross-section for W
pair production in processes of the CC11 class. With the
W production angle as an additional parameter, the ex-
pressions are not as compact as those for the total cross-
section.

By performing numerical calculations with the GENTLE
package we illustrated the effects of the background con-
tributions. At energies of about 500 GeV or more, back-
ground has sizeable effects especially for backward scatter-
ing. At energies of about 190 GeV background is less than
0.3% for all scattering angles. Contributions from anoma-
lous couplings are strongest in the same region. Therefore,
they cannot be studied without taking background prop-
erly into account.

The present calculation has several limitations, of more
importance at higher energies: the virtual corrections are
not taken into account; for angular distributions, the QED
ISR radiator function used is only an approximation for
the real photonic corrections (both with respect to the
O(α) part and to higher order corrections); the treatment
of finite width effects may be refined. One should estimate
the net effect to be of the order of up to few per cent at√

s = 500 GeV. Thus, GENTLE is certainly an appropri-
ate tool for the study of W pair production at LEP 2
while at higher energy it may serve as a playing ground
for sensitivity studies but may not replace a more com-
plete calculation.

Acknowledgement. We would like to thank Th. Ohl for nu-
merous discussions, hints, and numerical comparisons with the
Fortran program WOPPER [45,46]. Further, we would like to
thank D. Bardin for the continuous fruitful collaboration in
the GENTLE project.

A The CC03 process

The coefficient functions used in (2.2) are:

Ct =
2

(6π2)2
Re

1
|DW (s1)|2|DW (s2)|2

× L4(e, W ))L2(F1, W )L2(F2, W )
×Nc(F1)Nc(F2), (A.1)

Cst =
∑

k=γ,Z

2
(6π2)2

Re
1

|DW (s1)|2|DW (s2)|2Dk(s)

× gkL(e, l)L2(F1, W )L2(F2, W )L2(e, W )
×Nc(F1)Nc(F2), (A.2)

Cs =
∑

k,l=γ,Z

2
(6π2)2

Re
1

|DW (s1)|2|DW (s2)|2Dk(s)D∗
l (s)

× gkgl[L(e, k)L(e, l) + R(e, k)R(e, l)]
× L2(F1, W )L2(F2, W )Nc(F1)Nc(F2). (A.3)

The denominators of the boson propagators are:

DV (s) = s − M2
V + iMV ΓV , (A.4)

and the coupling constants in the standard model are:

gγ = gsW = e, gZ = gcW ,

L(f, W ) = g

2
√

2
, R(f, W ) = 0,

L(f, γ) = eQf

2 , L(f, Z) = e
4sW cW

(2If
3 − 2Qfs2

W ),

R(f, γ) = eQf

2 , R(f, Z) = e
4sW cW

(−2Qfs2
W ).

(A.5)
We use Qe = −1 and Ie

3 = − 1
2 . The colour factor Nc is 1

for leptons and 3 for quarks.
For the kinematical functions G we quote the expres-

sions from [36]:

Gt =
1
8

[
2s(s1 + s2) +

λ

4
sin2 θ +

λs1s2 sin2 θ

t2ν

]
, (A.6)

Gst =
1
8

[
(s − s1 − s2)

(
2s(s1 + s2) +

λ

4
sin2 θ

)

−s1s2

tν

(
4s(s1 + s2) − λ sin2 θ

)]
, (A.7)

Gs =
1
32

λ

[
2s(s1 + s2) +

(
3s1s2 +

λ

4

)
sin2 θ

]
, (A.8)

with

λ = s2 + s2
1 + s2

2 − 2ss1 − 2ss2 − 2s1s2 (A.9)

and the denominator of the neutrino propagator tν :

tν =
1
2

(
s − s1 − s2 −

√
λ cos θ

)
. (A.10)

B QED corrections

The differential cross-sections are calculated in the rest
system Σ′ of the W boson pairs (or, equivalently, of the
final state fermion pairs). If energetic photons are radi-
ated from the initial state, Σ′ differs from the laboratory
system Σ where the production angles are determined ex-
perimentally. The corresponding Lorentz boost will be de-
scribed in appendix B.2. An emission of photons from e−
or e+ leads to different relations between the W produc-
tion angle in Σ and in Σ′. Thus, we have to use the struc-
ture function approach for a description of ISR since here
the energy loss of each initial state particle is known.
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B.1 Structure function approach

In the structure function approach [48,10], the initial state
photonic corrections are taken into account by convoluting
the tree-level cross-section twice with the structure func-
tion D(x, s) (with the structure functions as described in
Sect. 2.3 of [38] and references therein):

dσQED(s)
ds1ds2d cos θ

=

1∫
xmin
1

dx1

1∫
xmin
2

dx2D(x1, s)D(x2, s)

×
∑

i=1,2

∣∣∣∣d cos θ′
i

d cos θ

∣∣∣∣ dσ(x1x2s, s1, s2)
d cos θ′

i

,

(B.1)

with θ′
i = θ′

i(s, s1, s2, x1, x2, θ) and the lower integration
boundaries

xmin
1 ≥ (

√
s1 +

√
s2)2

s
, (B.2)

xmin
2 ≥ (

√
s1 +

√
s2)2

x1s
. (B.3)

The sum in (B.1) indicates that no, one, or two solutions
may exist for θ′

i (defined in Σ′) at given values of the pa-
rameters in Σ. The Jacobean is easily derived from (B.22):

d cos θ′
1,2

d cos θ
= (B.4)

β1,2(1 − v2)[
β2

1,2 + v2(1 − β2
1,2 sin2 θ) − 2vβ1,2 cos θ

]3/2

×
[
β1,2 − v cos θ ± v(1 − cos2 θ)

1 − b2

b

v

1 ± vb cos θ

]
.

The b is given in (B.21), the velocity v of the W+W−
system in the laboratory frame Σ in (B.11), and the ve-
locities β1,2 of the W− in Σ in (B.16). For doubly reso-
nant diagrams the cross-section has to be multiplied by
the Coulomb correction C(x1x2s) [49–51]; we follow [50]
as described in [36].

For applications and comparisons with Monte Carlo
programs [52,53] it might be more convenient to determine
not the differential cross-section itself but to perform a
bin-wise integration:

σ =
∑

i

∫ cos θ′
bi

(θb)

cos θ′
ai

(θa)

dσ

d cos θ′ . (B.5)

Such an integration may be trivially performed analyti-
cally in Σ′ in view of the relatively simple angular de-
pendencies and computer time may be saved. Of course,
the boosted integration boundaries have to be determined.
For a given angular bin in the laboratory system, there
may exist zero, one, or two bins to be integrated over in
the boosted frame. More details on this may be found in
Sect. 2.4 of [38]. The bin-integrated cross-sections are used
in GENTLE for CC03 processes.

Finally, a remark on the use of the structure func-
tion D(x, s) might be necessary. This structure function
is determined for the total cross-section only. Thus, for
the differential cross-section it has to be considered as an
approximation.

B.2 Lorentz boost

We will denote 4-momenta in Σ′ as p′ and in Σ as p. In
Σ, the momenta of electron and positron are:

pe− = Ex1(1, 0, 0, 1), (B.6)
pe+ = Ex2(1, 0, 0,−1). (B.7)

E =
√

s/2 denotes the beam energy. In Σ′, the sum of
the spatial momenta of the two particles vanishes and one
gets in this frame:

p′
e− = E

√
x1x2(1, 0, 0, 1), (B.8)

p′
e+ = E

√
x1x2(1, 0, 0,−1). (B.9)

Applying the transformation formula

p′
3 =

p3 − vp0√
1 − v2

(B.10)

on one of the beam particles, one may derive the relative
velocity of the two Lorentz frames

v =
x1 − x2

x1 + x2
. (B.11)

In Σ′, one may choose the momenta of the W bosons as
follows:

p′
W − =

(√
λ′

4s′ + s1,

√
λ′

4s′ sin θ′, 0,

√
λ′

4s′ cos θ′
)

, (B.12)

p′
W+ =

(√
λ′

4s′ + s2, −
√

λ′

4s′ sin θ′, 0,

−
√

λ′

4s′ cos θ′
)

, (B.13)

where s′ = 4x1x2E
2 is the reduced center-of-mass energy

and
λ′ ≡ λ(s′, s1, s2). (B.14)

The energy and momenta of the bosons are fixed for
given values of s1 and s2. The momentum of the W− boson
in Σ can be written as:

pW − = (Qi, Bi sin θ, 0, Bi cos θ), (B.15)

where Qi and Bi are real and positive functions of s′,
s1, s2, cos θ and v. The velocity of the W−-boson in the
laboratory system is then:

βi =
Bi

Qi
, i = 1, 2. (B.16)
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With
pe− + pe+ = pW − + pW+ (B.17)

and

p2
W − = s1, p2

W+ = s2, (B.18)

two sets of solutions may be obtained:

B1,2 =
(s′ − s2 + s1)

√
1 − v2 (v cos θ ± b)

2
√

s′(1 − v2 cos2 θ)
, (B.19)

Q1,2 =
(s′ − s2 + s1)

√
1 − v2 (1 ± bv cos θ)

2
√

s′(1 − v2 cos2 θ)
. (B.20)

Here, we used the abbreviation

b =

√
1 − 4s1s′(1 − v2 cos2 θ)

(s′ − s2 + s1)2(1 − v2)
. (B.21)

The number of solutions depends on cos θ, v and b.
By definition, B is real and positive. There is no solution,
when v cos θ < −b, one solution for |v cos θ| < b, and two
solutions exist for v cos θ > b.

With the given solutions for B and Q and (B.10),
the relation between the W production angles in the two
Lorentz systems is found:

cos θ′ =
B cos θ − vQ√

(1 − v2)B2 sin2 θ + (B cos θ − vQ)2
. (B.22)

For the limiting case of on-shell W pair production the
transformation (B.22) is in accordance with a similar
transformation given in [54].

C Neutral current kinematical functions

In Sect. 2.2.3, we use two kinematical functions known
from the the study of neutral current process [55]:

The function GDD
422 is:

GDD
422 (cos θ; s1; s2, s) =

3
8
(1 + cos2 θ)G422(s1; s2, s)

+
1 − 3 cos2 θ

λ
s1(s + s2)

×3
4

(
1 − 2L(s1; s2, s)

ss2

s1 − s2 − s

)
, (C.1)

where G422 is also known from different contexts ([9],[56]-
[61]):1

G422(s; s1, s2) =
s2 + (s1 + s2)2

s − s1 − s2
L(s; s1, s2) − 2. (C.2)

The function GDD
233 (cos θ, s, s1, s2) is:

GDD
233 (cos θ, s, s1, s2) =

3
8
(1 + cos2 θ)G233(s; s1, s2)

− 3
λ2

3
8
(1 − 3 cos2 θ)s[L(s1; s2, s)2s2(s1 − s2)

+(s − s1 − 3s2)]
× [L(s2; s, s1)2s1(s2 − s1) + (s − s2 − 3s1)] , (C.3)

1 We explicitely agree with [9,56,57]

with [37]

G233(s; s1, s2) =
3
λ2 {L(s2; s, s1)L(s1; s2, s)

× 4s
[
ss1(s − s1)2 + ss2(s − s2)2 + s1s2(s1 − s2)2

]
+ (s + s1 + s2) [L(s2; s, s1)2s

× [(s − s2)2 + s1(s + s2 − 2s1)
]

+L(s1; s2, s)2s
[
(s − s1)2 + s2(s + s1 − 2s2)

]
+5s2 − 4s(s1 + s2) − (s1 − s2)2

]}
. (C.4)
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